Number Systems Formulas

Mathematical formulas and algorithms for converting between different number systems and positional notations

1Positional Notation System

General Formula

Where:

  • N = decimal value of the number
  • dᵢ = digit at position i
  • r = radix (base) of the number system
  • i = position index (starting from 0 for rightmost digit)
  • n = total number of digits

Extended Formula with Fractional Parts

For numbers with fractional parts:

Common Bases

Binary

Base 2

Digits: 0, 1

Octal

Base 8

Digits: 0-7

Decimal

Base 10

Digits: 0-9

Hexadecimal

Base 16

Digits: 0-9, A-F

2Base Conversion Algorithms

Any Base to Decimal

Algorithm: Horner's Method

Pseudocode:

result = 0
for each digit d from left to right:
    result = result × base + d
return result

Decimal to Any Base

Algorithm: Repeated Division

Where qᵢ are quotients, r is the target base, and dᵢ are remainder digits.

Pseudocode:

digits = []
while N > 0:
    remainder = N mod base
    digits.prepend(remainder)
    N = N ÷ base
return digits

3Binary System (Base 2)

Binary to Decimal

Example: (1101)₂ to decimal

Binary Arithmetic Operations

Binary Addition Rules

  • 0 + 0 = 0
  • 0 + 1 = 1
  • 1 + 0 = 1
  • 1 + 1 = 10 (0 with carry 1)

Binary Multiplication Rules

  • 0 × 0 = 0
  • 0 × 1 = 0
  • 1 × 0 = 0
  • 1 × 1 = 1

Binary-Decimal Conversion Shortcuts

Powers of 2

2⁰ = 1
2¹ = 2
2² = 4
2³ = 8
2⁴ = 16
2⁵ = 32
2⁶ = 64
2⁷ = 128
2⁸ = 256
2⁹ = 512
2¹⁰ = 1024
2¹¹ = 2048

4Octal System (Base 8)

Octal to Decimal

Example: (157)₈ to decimal

Binary-Octal Conversion

Direct Conversion Method

Each octal digit corresponds to exactly 3 binary digits:

0₈ = 000₂
1₈ = 001₂
2₈ = 010₂
3₈ = 011₂
4₈ = 100₂
5₈ = 101₂
6₈ = 110₂
7₈ = 111₂

Powers of 8

8⁰ = 1
8¹ = 8
8² = 64
8³ = 512
8⁴ = 4,096
8⁵ = 32,768

5Hexadecimal System (Base 16)

Hexadecimal to Decimal

Example: (2AF)₁₆ to decimal

Hexadecimal Digits

0₁₆ = 0₁₀
1₁₆ = 1₁₀
2₁₆ = 2₁₀
3₁₆ = 3₁₀
4₁₆ = 4₁₀
5₁₆ = 5₁₀
6₁₆ = 6₁₀
7₁₆ = 7₁₀
8₁₆ = 8₁₀
9₁₆ = 9₁₀
A₁₆ = 10₁₀
B₁₆ = 11₁₀
C₁₆ = 12₁₀
D₁₆ = 13₁₀
E₁₆ = 14₁₀
F₁₆ = 15₁₀

Binary-Hexadecimal Conversion

Direct Conversion Method

Each hexadecimal digit corresponds to exactly 4 binary digits:

0₁₆ = 0000₂
1₁₆ = 0001₂
2₁₆ = 0010₂
3₁₆ = 0011₂
4₁₆ = 0100₂
5₁₆ = 0101₂
6₁₆ = 0110₂
7₁₆ = 0111₂
8₁₆ = 1000₂
9₁₆ = 1001₂
A₁₆ = 1010₂
B₁₆ = 1011₂
C₁₆ = 1100₂
D₁₆ = 1101₂
E₁₆ = 1110₂
F₁₆ = 1111₂

Powers of 16

16⁰ = 1
16¹ = 16
16² = 256
16³ = 4,096
16⁴ = 65,536
16⁵ = 1,048,576

6Fractional Number Conversions

Fractional Part to Decimal

Example: (0.101)₂ to decimal

Decimal Fraction to Any Base

Algorithm: Repeated Multiplication

Pseudocode:

fraction = decimal_part
digits = []
while fraction ≠ 0 and precision not reached:
    fraction = fraction × base
    digit = floor(fraction)
    digits.append(digit)
    fraction = fraction - digit
return "0." + digits

7Arithmetic in Different Bases

Addition in Base r

When the sum of digits ≥ r, carry 1 to the next position and subtract r from the sum.

Multiplication in Base r

Similar to decimal multiplication, but use base r for carries.

Quick Reference Table

DecimalBinaryOctalHexadecimal
0000
1111
21022
31133
410044
510155
611066
711177
81000108
91001119
10101012A
11101113B
12110014C
13110115D
14111016E
15111117F
16100002010